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Euler Equation and Bernoulli’s 
Theorem
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Overview

• Fluid dynamics deals with the relation between the motion 
of fluids considering the forces and moments which create 
the motion.
• Forces acting on fluid elements are of two types: body forces 

acting on the center of mass of the fluid element and surface 
forces acting through the surfaces. 
• For ideal (bulk) fluids (zero viscosity and compressibility) the 

surface forces reduce to an isotropic pressure (Pascal’s 
Theorem) and the governing dynamical equation was 
derived by Euler. 
• Euler’s equation is a PDE that can be integrated along the 

streamlines and the integral is known as Bernoulli’s equation 
(Bernoulli’s first Theorem).
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Forces on a control volume

The forces acting on a control volume consist of body forces that act
throughout the entire body of the control volume (such as gravity, electric,
and magnetic forces) and surface forces that act on the control surface
(such as pressure and viscous forces and reaction forces at points of
contact). 3
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Body forces: 1 vector or rank 1 tensor
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Surface forces: 2 vectors or rank 2 tensor

𝜎!" is the force per unit area in the direction of j through the plane (perpendicular to) i 
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Stress tensor in cartesian coordinates

The diagonal components of the stress tensor are called normal stresses; they
are composed of pressure (which always acts inwardly normal) and viscous
stresses. 
Viscous stresses are discussed in more detail later. The off-diagonal 
components, are called shear stresses; since pressure can act only normal to a 
surface, shear stresses are composed entirely of viscous stresses.
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Surface forces
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Stress on surface
element dA, with
𝑛 ≡ (𝑛! , 𝑛" , 𝑛#)

From 𝜎!" " 𝑛 we find the stress components:

• in the 𝑥 direction, (𝜎##+ 𝜎$# + 𝜎%#)𝑛#

• in the 𝑦 direction, (𝜎#$+ 𝜎$$ + 𝜎%$)𝑛$

• in the 𝑧 direction, (𝜎#%+ 𝜎$% + 𝜎%%)𝑛%

The force is the product of the stress by the
area.
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Body forces act on each volumetric portion of the control volume. The body
force acts on a differential element of fluid of volume dV within the control
volume, and we must perform a volume integral to account for the net body 
force on the entire control volume. 

Surface forces act on each portion of the control surface. A differential surface
element of area dA and unit outward normal 𝑛 is shown, along with the
surface force acting on it. We must perform an area integral to obtain the net 
surface force acting on the entire control surface.

Total force
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The linear momentum equation

• Therefore, Newton’s second law can be stated as the sum of all external
forces acting on a system is equal to the time rate of change of linear 
momentum of the system.

• Applying the Reynolds transport theorem we find:

𝑃
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Newton’s law for a control volume
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Water jet on
stationary plate

• The momentum equation for 
steady flow is given as

• The reaction force at the plate is

Note that 𝛽 = 1in this course.
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Deceleration of a 
spacecraft
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The spacecraft is treated as a body with constant mass, 
and the momentum equation is

Since the motion is 1d, the acceleration is

The velocity change of the spacecraft is

The thrusting force exerted on the space aircraft is,

Note that 𝛽 = 1in this course.
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More on the stress tensor
Pascal’s Theorem
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The stress tensor is symmetric (Faber or
Batchelor)

• Choose axes paralel to the directions of a cubic fluid element (dashed
lines)
• Consider a cubic fluid element of side d
• Consider one face of the cube, ABCD. The plane that passes through

AB has a normal in the x (1) direction.
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Balance of forces and torques

• Forces 
Normal forces are: 𝑑* 𝑝+ , 𝑑* 𝑝* and 𝑑* 𝑝, with three other forces 
acting on the opposite faces. 
The forces act on an element of fluid of volume 𝑑,. As 𝑑 → 0 the
acceleration diverges as +

-
unless the forces on opposite faces of the

cube balance. 

• Torques
Tangencial forces:  𝑑* 𝑠*+ and 𝑑* 𝑠+* produce a torque 𝑑, (𝑠*+−𝑠+*)
about O, which produces an angular acceleration that diverges as +

-&(the moment of inertia of the element of fluid scales with the 5th

power of d ) unless the torque vanishes. So, 𝑠*+ =𝑠+* = 𝑠, (Faber’s
notation, 3 is the axis of rotation). 
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Transformation of the stress tensor under
rotation of the axes

• Rotate the axes by 45º, along the diagonal of the square face and consider the
plane that passes through AC. Note that the length of AC is 2𝑑 . The height of
the triangular prism ABC is 𝑑.
• Consider the normal and tangencial forces in the new primed (‘) directions. Since

both the sine and the cosine of 45º are '
'

, simple trigonometry yields,

• Similarly,

and thus the sum of the two normal stresses is invariant,
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Average pressure

• A similar calculation involving p3 leads to the important result, that
the average pressure is an invariant, i.e. the same for any rotation. 

• Note that the pi‘s may differ and will change as the axes rotate, but
their sum does NOT.
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Fluids at mechanical equilibrium

• At equilibrium the shear stresses vanish (otherwise there would be
flow) which implies that,

and similarly, for p3. This means that 𝑝+= 𝑝* =𝑝, = 𝑝 in any frame of
reference, i.e. the pressure is a scalar field.

Pascal’s Theorem

At mechanical equilibrium the pressure is a scalar
field, 𝑝(𝑟).
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Increase of pressure with depth
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Rigid body motion I (overflow from a water
tank)
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Rigid body motion II (free surface of a rotating
vertical cylinder)
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In cylindrical coordinates,

From dP=0, we find the isobars

Mass conservation yields,

and
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Stability of floating objects

A floating body is stable if the body is (a) bottom-heavy and thus the
center of gravity G is below the centroid B of the body, or (b) if the
metacenter M is above point G. However, the body is (c) unstable if M is
below point G.
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The Euler fluid: zero viscosity 
and zero compressibility 

As a result the shear stresses are zero and the density is constant
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Euler fluid

• For an Euler fluid the continuity equation implies that
∇ * 𝑉 = 0

and the inviscid (zero viscosity) condition implies that the stress tensor reduces to 
a scalar isotropic pressure, p, which may vary in space (pressure field). 

• The surface forces acting on an element of fluid, per unit volume, are given
by −∇𝑝 (recall that the force in the 𝑥 direction is:−() # ($(%

(*
=−+)

+#
).

• The surface forces per unit mass are then −∇)
-

.

• The total force may include body terms, such as gravity, −∇𝑔𝑧.

• The Euler equation is

𝑓 = −∇)
-
−∇𝑔𝑧 = .*

./
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Stationary flow

• Recall that the material derivative is given by (Euler or velocity field
description of the flow)

• And note that the acceleration is generally non-zero for a stationary flow. 

( )DV dV V V V
Dt dt t

¶
= = + Ñ

¶

! ! !
! ! !
"
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Longitudinal and transverse componentes of
the acceleration

• Consider the longitudinal component (1) of the velocity field
along a streamline. Only that componente (1) of u is non-zero. 
The longitudinal acceleration, in the direction of the flow, is
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Longitudinal and transverse componentes pf
the acceleration

• The acceleration will have in general transverse components (e.g. 
centripetal acceleration) in directions 2 and 3, namely,

• Assume that second term is zero. Then the motion around point
P is in the plane 12 (no motion in the third direction). 
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Let O be the centre of curvature at P and rc its
radius.

At nearby Q the second component of the
velocity is, 

Which is to first order in 𝜃,

29

29

Note that to first order in 𝜃:

And then, we find

Which is equivalent to the familiar centripetal acceleration result (used before):

The Euler equation (transverse pressure gradient) becomes:
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The bucket of water revisited (Faber)

The hydrostatic pressure at P is

Using the expression for the transverse
pressure gradient, the rate of change of
𝜁 at r, becomes

Integration, yields for the height at r:
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The plug-hole vortex (Faber)

Conservation of angular momentum: 
particles initially at R move to r, with angular velocity

Using the expression for the transverse
pressure gradient, 

Integration, yields for the depth at r
(measured from the height at R):
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Vorticity Ω = ∇×𝑉

Using cylindrical coordinates, or otherwise, it is found that the vorticity in the
previous two examples is given by (see Faber)

The rigid body flow in the bucket (A) is rotational, while that in the plug vortex (B) 
is irrotational.
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Both the efflux of the water and the trajectory of the resulting
jet are well described by ideal fluid theory
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Another spectacular success is the theory of flight. The ideal flow
of air around a wing is able to describe the lift necessary for
flight, and much more.
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Bernoulli equation

The longitudinal (along a streamline) component of the acceleration

and that of the force

may be integrated along the streamline, to give

which is known as the Bernoulli equation. Note that the constant of integration may
(and will in general) depend on the streamline.
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The Bernoulli equation is an approximate equation that is valid only in inviscid
regions of flow where net viscous forces are negligibly small compared to inertial, 
gravitational, or pressure forces. 

Such regions occur outside of boundary layers and wakes.
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Bernoulli equation (conservation of energy)

The variation of kinetic and potential energy between
points P and Q is

The work done on the fluid is

Equating the two we find (again) the Bernoulli equation.  
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The sum of the
kinetic, 
potential, and
flow energies
of a fluid
particle
is constant
along a 
streamline
during steady
flow when
compressibility
and frictional
effects are 
negligible.
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Bernoulli equation for flows with zero vorticity: 
constant independente of the streamline

Zero vorticity implies:

Then, the longitudinal component of the material derivative is

With similar results for the transverse directions.
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Then,

And the Euler equation becomes:

In stationary flow,

The Euler equation may be integrated in ANY direction, implying that the integration
constant is the SAME for all the streamlines (that is everywhere).
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Velocity of discharge from a large tank
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Direct application of Bernoulli’s equation,

The discharge velocity is,
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Table top experiment
Try to check this for water and oil.  
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Time of discharge of a tank

44

44

Pitot tube
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Application of Bernoulli’s equation,

Hydrostatic pressure at points 1 and 2,

Gives for the for the velocity at 1,
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